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Given an input X and a pre-trained model (@), aim is to understand model s reasoning

behind making certain prediction via computational argumentation. * In the proposed debate game, both the players converge at NE, making true and honest argumen

\ about the given environment [2].
« Atany NE, sampled features z for any given image can be divided into z, and z,, such that o’
V o \ Z,2,<2,2,UZ,=2zand z; N z, = ¢, where z, IS a set of features uniquely observed for a giver
EXxistl Nng Approaches class of images (semi-factual set of features) while z, is a set of features that can be observed fc
multiple classes (counter-factual set of features), as described in the figure.
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Our Approach g
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We model our framework as a multiplayer sequential zero-sum game, where players aim : : ; o ~ Game Objective
to maximize their utilities by adjusting their arguments with respect to other players’ ' 1) v v | V(Pell,??gg):mmmax """"""""""""""""
counterarguments in the process of understanding the classifier’s reasoning. . o o o or 07
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« The contrastive nature of our framework encourages players to put forward diverse @ @ ; Pr;':;f’on (o) |
arguments, picking up the reasoning trails missed by their opponents.
« The Debate framework focuses on interaction between arguments and not just N O ST B e G 1 A 2 ) B S E e '
feature importance. N~
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V Quantization V Results \

* The quantization process initially requires us to define a codebook, with K discrete - - - : : -
embeddings where each embedding is a D dimensional vector. n/Zr—\ Non Committed Split Ratio (Zg) Committed Split Ratio (ZR)

« \We then define a discrete uniform prior and learn a categorical distribution as Dataset | 4 6 10 4 6 10 4 6 10 4 6 10
follows [1]:

SHAPE 0.55 0.79 0.89 058 0.60 0.60 059 082 093 0.59 0.60 0.58

P(z=k|z) = {1 for k=i [|®e(z) — il } MNIST 058 061 075 044 045 056 052 0.64 073 040 047 0.8
0 otherwise AFHQ 0.60 0.77 080 043 058 054 061 0381 0.79 053 0.59 0.59
N\ Table 1: Ablation results on debate accuracy and split ratio wrt debate length
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Arguments behavior at convergence for the model trained on SHAPE dataset, the
plots
from left to right corresponds to 4, 6, and 10 argument debates.

F Considered Models F Conclusion References
We tested our framework on three different pre-trained models: e We Propose and justify the argumentative framework to demystify the * Van Den _Oord, A._, Vinyal_s, O., et gl.: Neural discrete representation learning.
reasoning process of any pre-trained CNN classifiers. . Ining. & Christiano, P and Amode. D. 2016, A safety via debate, arxiv pregrit

1. 5 layered sequential CNN, trained on MNIST dataset with an image . Contestable/Argumentative approaches provides multiple different arX_iv:’1805.00899. | |
resolution 32x32 perspectives on the model’s reasoning process. e I o oceasing systome 2y C Visual attention

2. 5 layered sequential CNN, trained on SHAPES dataset with an image « One main limitation in this work is to address human . Kori, A, Glocker, B. and Toni, F, 2022. Visual Debates. arXiv preprint
resolution 32x32 understandability of the generated player arguments, which we plan to arXiv:2210.09015. | |

3. Densenet 121 trained on AFHQ dataset with an image resolution 128x128 \\address in future work. \\G'th”b code: koriavinash1/VisualDebates (github.com)
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